ORIGINAL PAPER

Design and synthesis of 3-acyl-2(3*H*)-benzoxazolone and 3-acyl-2(3*H*)-benzothiazolone derivatives

Faouzi Guenadil · Hocine Aichaoui · Coco N. Kapanda · Didier M. Lambert · Christopher R. McCurdy · Jacques H. Poupaert

Received: 13 October 2008/Accepted: 7 November 2010/Published online: 2 December 2010 © Springer-Verlag 2010

Abstract A simpler and efficient "green" method using solid sodium hydroxide in a solvent mixture of acetone/ water was found to catalyze N-acylation of 2(3H)-ben-zoxazolones and 2(3H)-benzothiazolones for facile and rapid synthesis of *N*-acyl derivatives in excellent yields. This method was applied to the synthesis of a series of 132 compounds employing a variety of acyl chlorides.

Keywords 2(3H)-Benzoxazolone · 2(3H)-Benzothiazolone · N-Acylation reaction · Acyl chlorides

Introduction

The 2(3H)-benzoxazolone heterocyclic template has long been known as a bioisostere of catechol and can be considered a "privileged scaffold" in the design of new pharmacophores [1]. Therapeutic applications of this platform are very broad and range from analgesic antiinflammatory compounds to anticocaine and neuroprotective

F. Guenadil · H. Aichaoui

Laboratoire de Chimie Pharmaceutique, Département de Chimie, Faculté des Sciences, Université de Badji-Mokhtar, 23000, BP 12, Annaba, Algeria

C. N. Kapanda · D. M. Lambert · J. H. Poupaert (⊠) Louvain Drug Research Institute, Département de Chimie Pharmaceutique (CMFA-Cannabinoid and Endocannabinoid Research Group), Université Catholique de Louvain, 1200 Brussels, Belgium e-mail: jacques.poupaert@uclouvain.be

C. R. McCurdy

Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677, USA anticonvulsant agents [2–7]. In particular, 6-benzoyl-2(3*H*)benzoxazolone (CERM 10194) and its sulfur surrogate (S-14080) underwent clinical trials as anti-inflammatory analgesics [6–10]. They were found to inhibit not only the arachidonic inflammatory cascade, but also to induce the release of an opioid peptide (possibly endomorphin) in the periphery [1]. Thus, in an effort aimed at developing mild and flexible strategies to design new 2(3*H*)-benzoxazolone libraries and synthesize heterocyclic scaffolds to prepare new valuable building blocks in medicinal chemistry, we devised an efficient and green method to get access to a collection of 3-acyl-2(3*H*)-benzoxazolones and their corresponding sulfur bioisosters, which are regioisomeric analogs of the prototypic CERM 10194 and S-14080 (Fig. 1).

Results and discussion

The synthesis of 3-acyl-2(3H)-benzoxazolones and 3-acyl-2(3H)-benzothiazolones is well documented in the literature and makes use of a base-catalyzed acyl transfer process using either acid halides or anhydrides as acylating agents and various bases as catalysts, such as pyridine, TEA, potassium carbonate, etc., in various organic solvents (i.e., acetone, THF, DMF) [11-16]. While in our hands these processes led effectively to the desired acylated species in fair to good yields, none of them were judged satisfactory to elaborate a library of the title compounds. All of them required a certain degree of labor and workup (heating for several hours, dilution in large volume of water, neutralization, extraction, etc.). We therefore searched for a simpler alternative method that would fit in the concept of green chemistry. We were pleased to observe that the reaction of 2(3H)-benzoxazolone with benzoyl chloride proceeded to completion at room temperature within 30 min when run in

Fig. 1 Structure of CERM 10194 (X=O) and S-14080 (X=S)

an acetone:water mixture (90:10, v/v) upon addition of solid sodium hydroxide. The optimum amount of sodium hydroxide and the acetone:water ratio was tuned by incremental modifications. The recovery of the product was extremely simple as the final product precipitates. It was easily filtered off, and this operation could eventually be automated. To our surprise, use of a phase transfer catalyst (PEG600 or benzyltrimethylammonium chloride) [17–19] in typical conditions of solid liquid phase transfer catalysis gave results similar to those obtained with the simpler acetone:water system, and substitution of NaOH by KOH or LiOH or changes of acetone by other classical solvents were found slightly detrimental. A possible explanation of these special features can be presented: it has been reported indeed that 4-hydroxy-4-methylpentane-2-one (known as diacetone alcohol), i.e., the product arising from acetone aldolization, can coordinate a sodium cation. This species is thus likely to work as a solid-liquid phase transfer catalyst and can promote the N-acylation [20, 21]. To expand the diversity at the 6-position of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone, a first step consisted of the synthesis of the key structural elements, and Scheme 1 illustrates the reactions finally adopted.

The classical nitration procedure using nitric acid yielded the corresponding 6-nitro-2(3H)-benzoxazolone and 6-nitro-2(3H)-benzothiazolone in 79 and 78% yields [22]. The aromatic bromination reaction of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone with bromine in the presence of sodium acetate in glacial acetic acid offers one of the most direct and viable methods for the synthesis of 6-bromo derivatives in satisfactory yields after 24 h [23]. To improve the yield, an alternative bromination reaction was employed using NBS in water acidified with sulfuric acid affording **1b** and **2b** with an improved yield (83–85%) and a shorter reaction time of 8 h [24]. The Friedel-Crafts acylation reaction taking advantage of the AlCl₃-DMF complex as catalyst is well known and provides ready access to substituted 6-acyl-2(3H)-benzoxazolones and 6-acyl-2(3H)-benzothiazolones in high yields [25-27]. According to the synthetic procedure shown in Scheme 1, we synthesized a library of 132 compounds, employing 11 acid chlorides, 2(3H)-benzoxazolone, 2(3H)-benzothiazolone, and 10 of their derivatives (Fig. 2); 28 of them have been described previously [11–16, 28–46].

All these compounds were characterized for purity by thin-layer and HPLC chromatography conditions. In 118 samples, the purity exceeded 92%. Their structure was ascertained by proton and carbon-13 nuclear magnetic resonance.

Conclusion

In conclusion we developed and optimized a practical green protocol of N-acylation of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone derivatives. The synthesis route employed provided ready access to a library of 132 derivatives of 3-acyl-2(3H)-benzoxazolones and 3-acyl-2(3H)-benzothiazolones with diversification in two different positions.

Experimental

Melting points were determined in open capillary tubes using an Electrothermal melting point apparatus. IR spectra were recorded using a dispersion of the product in KBr disks by means of a Perkin-Elmer 457 spectrometer. ¹H and ¹³C NMR spectra were recorded in 3-mm tubes at ambient temperature on a Bruker Avance 400 MHz spectrometer. Compounds were dissolved in CDCl₃ or DMSO- d_6 with TMS as internal reference. Thin-layer chromatography analyses were performed on Merck TLC plates (silica gel, 60 F 254, E. Merck, Darmstadt, Germany, ref. 5735). All compounds reported here were routinely checked in two standard solvents, i.e., ethyl acetate:acetone:cyclohexane (solvent A, 5:2:3, v/v/v), and purity reverse-phase thin-layer chromatography conditions were: HPTLC plates RP-18 F-254 S (Merck), methanol:water (75:25, v/v). All compounds reported were found homogenous under such TLC and HPLC conditions. All reagents were obtained commercially from Aldrich and were used as received. All solvents were of the ACS.

Procedure for the nitration reaction

To 1 mmol of 2(3H)-benzoxazolone or 2(3H)-benzothiazolone was added 10 cm³ HNO₃ (68%) under stirring. The reaction mixture was heated at 50 °C for 30 min and kept at room temperature for 2 h. After that, 50 cm³ H₂O was added to the reaction mixture, stirred for 15 min, filtered, washed, dried and crystallized from ethanol. The physical properties (m.p., IR, ¹H NMR) are in accordance with published data [22, 47].

Procedure for the bromination reaction in water

To a suspension of 1 mmol of 2(3H)-benzoxazolone or 2(3H)-benzothiazolone in 10 cm³ H₂O, 1 mmol of NBS

Scheme 1

ne	R ¹ =	-H	-NO ₂	-Br	CH ₃ CO-	CH ₃ CH ₂ CO-	C ₆ H ₅ CO-
	X=O	a1-a11	1a1-1a11	1b1-1b11	1c1-1c11	3c1-3c11	5c1-5c11
	X=S	b1-b11	2a1-2a11	2b1-2b11	2c1-2c11	4c1-4c11	6c1-6c11
	R ² = Cł	H ₃ - 1	CH ₃ CH ₂ - 2	(Cl	H ₃) ₂ CH- 3	(CH ₃) ₃ C- 4	C ₆ H ₅ -CH ₂ - 5
	C ₆ H ₅ -CH ₂ CH ₂ - 6		H ₂ -	C ₆ H ₅ - 7	<i>m</i> -CH ₃ -C ₆ H ₄ - 8		<i>р-</i> СН ₃ -С ₆ Н ₄ - 9
	<i>o</i> -CI-C ₆ H ₄ - 10		ļ	2-NO ₂ -C ₆ H ₄ 11	-		

Fig. 2 Structural diversity of the 3-acyl-2(3*H*)-benzoxazolom and 3-acyl-2(3*H*)-benzothiazolone derivatives

was added and the reaction mixture heated to 60 °C while stirring. H_2SO_4 (40% aq solution, 2 mmol) was then added and stirring continued for 8 h. After that, the reaction mixture was cooled, and 30 cm³ of water was added and stirred for 15 min, filtered, washed, dried and crystallized from ethanol. The physical properties (m.p., IR, ¹H NMR) are in accordance with published data [23, 48].

General procedure for the Friedel-Crafts acylation using AlCl₃-DMF

In a three-neck round-bottom flask (250 cm³), 53.3 g AlCl₃ (0.4 mol) was placed. The flask was then equipped with a reflux condenser with a CaCl₂ tube and a magnetic stirrer. Dimethylformamide (8.6 cm³, 0.115 mol) was added dropwise over 10 min. The flask was then placed in an oil bath at 45 °C, and the substrate 2(3H)-benzoxazolone or 2(3H)-benzothiazolone (0.04 mol) was added in portions over 5 min. Care was taken during this addition to ensure the formation of a homogeneous paste. The acylating agent (0.06 mol) was then added dropwise over 10 min. The temperature was subsequently raised to 85 °C. After cooling, the products were isolated by addition of ice. The precipitate was stirred for 1 h, collected on a Buchner funnel, dried, and crystallized from ethanol. The physical properties (m.p., IR, ¹H NMR) are in accordance with published data [9, 17].

General procedure for the N-acylation reaction in acetone-water mixture

To a solution of 0.6 g NaOH (0.015 mol) in 5 cm³ water was added under stirring 0.012 mol of 2(3H)-benzoxazolone or 2(3H)-benzothiazolone or their derivatives, then 45 cm³ of acetone was added to this solution. After stirring for 15 min, 0.015 mol acylating was added, and the resulting mixture was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and the residue triturated with water, filtered, dried, and crystallized from ethanol to afford good purity of the compounds.

3-(2,2-Dimethylpropionyl)-2(3H)-benzoxazolone (**a4**, C₁₂H₁₃NO₃)

Yield 95%; m.p.: 62 °C; IR (KBr): $\bar{\nu} = 2,974, 1,797, 1,716, 1,630, 1,599 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.49$ (s, 3CH₃), 7.30–7.00 (m, 3Ar-H), 7.90 (m, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 26.22, 42.80, 109.75, 116.45, 124.47, 124.87, 129.38, 142.07, 150.12, 178.34 ppm.$

3-(Phenylacetyl)-2(3H)-benzoxazolone (a5, C₁₅H₁₁NO₃)

Yield 97%; m.p.: 156 °C; IR (KBr): $\bar{\nu} = 2,929, 1,798, 1,725, 1,627, 1,604 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{CDCl}_3): \delta = 4.45 \text{ (s, 1CH}_2), 7.21–7.10 (m, 3Ar-H), 7.40–7.26 (m, 5Ar-H), 8.04$

(d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 42.87$, 109.88, 116.25, 124.90, 125.43, 127.57, 127.88, 128.74, 129.85, 132.57, 142.31, 151.30, 170.55 ppm.

3-(3-Phenylpropionyl)-2(3H)-benzoxazolone (**a6**, C₁₆H₁₃NO₃)

Yield 96%; m.p.: 119 °C; IR (KBr): $\bar{\nu} = 2,936, 1,796, 1,728, 1,625, 1,602 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (CDCl_3): \delta = 3.08 (t, 1CH_2), 3.42 (t, 1CH_2), 7.31–7.10 (m, 8Ar-H), 8.04 (d, 1Ar-H) ppm; {}^{13}\text{C} \text{ NMR} (CDCl_3): \delta = 29.94, 38.47, 109.89, 116.07, 124.86, 125.35, 126.47, 127.80, 128.60, 128.62, 140.10, 142.32, 151.35, 171.74 ppm.$

3-(3-Methylbenzoyl)-2(3H)-benzoxazolone (**a8**, C₁₅H₁₁NO₃)

Yield 97%; m.p.: 130–132 °C; IR (KBr): $\bar{v} = 2,924, 1,796,$ 1,701, 1,618, 1,603 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.43$ (3H, s, 1CH₃), 7.20–7.70 (7H, m, 7Ar-H), 7.98 (1H, d, J = 8.02 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.35,$ 110.14, 114.28, 124.40, 126.75, 128.24, 130.04, 132.05, 134.13, 138.34, 142.76, 151.01, 167.99 ppm.

3-(2,2-Dimethylpropionyl)-2(3H)-benzothiazolone (**b4**, C₁₂H₁₃NO₂S)

Yield 77%; m.p.: 54 °C; IR (KBr): $\bar{\nu} = 2,928, 1,718, 1,660, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.69$ (s, 3CH₃), 7.39–7.28 (m, 3Ar-H), 8.06 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 25.29, 41.17, 117.63, 122.57, 123.27, 126.50, 134.70, 138.83, 170.21, 172.94 ppm.$

3-(3-Phenylpropionyl)-2(3H)-benzothiazolone (**b6**, C₁₆H₁₃NO₂S)

Yield 95%; m.p.: 84 °C; IR (KBr): $\bar{\nu} = 2,962, 2,917,$ 1,706, 1,681, 1,618, 1,578 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.08$ (t, 1CH₂), 3.45 (t, 1CH₂), 7.40–7.10 (m, 8Ar-H), 8.22 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 29.09,$ 39.31, 116.46, 120.48, 121.24, 121.32, 124.13, 124.99, 125.66, 127.20, 127.22, 127.76, 133.39, 138.94, 169.66, 172.00 ppm.

$\label{eq:3-Methylbenzoyl} 3-(3-Methylbenzoyl)-2(3H)-benzothiazolone$

(**b8**, C₁₅H₁₁NO₂S)

Yield 90%; m.p.: 138–140 °C; IR (KBr): $\bar{\nu} = 2,919, 1,715, 1,670, 1,604 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 2.33$ (3H, s, 1CH₃), 7.20–7.66 (7H, m, 7Ar-H), 7.98 (1H, m, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 21.29, 114.82, 122.13, 122.67, 124.90, 127.39, 128.58, 130.55, 132.65, 134.85, 135.12, 138.71,168.34, 169.39 ppm.$

$\label{eq:2.1} 3-(4-Methylbenzoyl)-2(3H)-benzothiazolone$

$(b9, C_{15}H_{11}NO_2S)$

Yield 89%; m.p.: 88 °C; IR (KBr): $\bar{\nu} = 2,933, 1,702, 1,667, 1,588 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.44$ (s, 1CH₃), 7. 12–7. 30 (m, 3Ar-H), 7.51–7.38 (m, 2Ar-H), 7.76 (m, 2Ar-H), 7.98 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 20.41, 113.27, 120.95, 121.22, 123.34, 125.92,$

128.05, 128.11, 128.30, 129.03, 129.17, 133.53, 144.19, 167.19, 167.95 ppm.

3-(2-Chlorobenzoyl)-2(3H)-benzothiazolone (**b10**, C₁₄H₈ClNO₂S)

Yield 96%; m.p.: 80–81 °C; IR (KBr): $\bar{\nu} = 1,706, 1,683, 1,618, 1,593 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.19-7.65$ (7H, m, 7Ar-H), 8.14 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 116.28, 121.80, 121.95, 125.42, 126.84, 129.08, 129.51, 130.59, 131.01, 131.91, 133.65, 134.41, 166.45, 169.30 ppm.$

3-(2-Methylpropionyl)-6-nitro-2(3H)-benzoxazolone

$(1a3, C_{11}H_{10}BrN_2O_5)$

Yield 75%; m.p.: 134–136 °C; IR (KBr): $\bar{\nu} = 2,925, 1,793, 1,712, 1,615, 1,601 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.36$ (6H, d, 2CH₃), 3.84 (1H, m, 1CH), 8.09 (1H, d, J = 7.91 Hz, 1Ar-H), 8.27 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 18.63, 34.38, 105.87, 116.48, 121.72, 133.22, 142.02, 145.07, 150.90, 176.58 ppm.$

3-(2,2-Dimethylpropionyl)-6-nitro-2(3H)-benzoxazolone (1a4, $C_{12}H_{12}N_2O_5$)

Yield 73%; m.p.: 226–227 °C; IR (KBr): $\bar{\nu} = 2,929, 1,760, 1,725, 1,610, 1,599 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.29$ (9H, s, 3CH₃), 8.10 (1H, d, J = 7.88 Hz, 1Ar-H), 8.26 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 26.97, 39.27, 105.47, 109.41, 114.97, 120.83, 136.93, 142.83, 154.28, 172.28 ppm.$

$\begin{array}{l} 6\text{-Nitro-3-(phenylacetyl)-2(3H)-benzoxazolone} \\ \textbf{(1a5, } C_{15}H_{10}N_2O_5) \end{array}$

Yield 89%; m.p.: 161–163 °C; IR (KBr): $\bar{\nu} = 2,918, 1,795, 1,736, 1,611 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 4.43$ (2H, s, 1CH₂), 7.20–7.45 (5H, m, 5Ar-H), 8.12 (1H, d, J = 7.78 Hz, 1Ar-H), 8.26–8.30 (2H, m, 2 Ar–H) ppm; ¹³C NMR (CDCl₃): $\delta = 42.16, 109.41, 115.09, 121.03, 127.65, 128.30, 129.32, 130.63, 133.62, 141.61, 142.62, 150.57, 170.74 ppm.$

6-Nitro-3-(3-phenylpropionyl)-2(3H)-benzoxazolone (**1a6**, C₁₆H₁₂N₂O₅)

Yield 91%; m.p.: 149 °C; IR (KBr): $\bar{v} = 2,931, 1,806, 1,735, 1,615 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 2.98$ (t, 2CH₂), 3.33 (t, 2CH₂), 7.30–7.10 (m, 5Ar-H), 8.10 (d, 1Ar-H), 8.25 (m, 1Ar-H), 8.37 (s, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 28.93, 37.79, 105.83, 115.00, 120.99, 126.13, 128.38, 133.39, 140.29, 141.80, 144.07, 150.62, 171.64 ppm.$

3-(3-Methylbenzoyl)-6-nitro-2(3H)-benzoxazolone (1a8, C₁₅H₁₀N₂O₅)

Yield 90%; m.p.: 167–169 °C; IR (KBr): $\bar{\nu} = 2,923, 1,785, 1,715, 1,609 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 2.48$ (3H, s, 1CH₃), 7.36–7.79 (4H, m, 4Ar-H), 7.95 (1H, d, J = 7.89 Hz, 1Ar-H), 8.25–8.32 (2H, m, 2Ar-H) ppm; ¹³C

NMR (DMSO- d_6): $\delta = 20.71$, 105.90, 114.27, 120.75, 126.92, 128.06, 129.92, 131.73, 134.16, 137.64, 142.30, 144.05, 150.28, 167.18 ppm.

3-(4-Methylbenzoyl)-6-nitro-2(3H)-benzoxazolone

$(1a9, C_{15}H_{10}N_2O_5)$

Yield 92%; m.p.: 191–193 °C; IR (KBr): $\bar{\nu} = 2,926, 1,799, 1,694, 1,610 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 2.44$ (3H, s, 1CH₃), 7.35–7.80 (4H, m, 4Ar-H), 7.98 (1H, d, J = 7.99 Hz, 1Ar-H), 8.20–8.32 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 21.27, 105.89, 114.21, 120.71, 127.87, 128.75, 129.28, 130.05, 134.24, 137.59, 142.27, 150.27, 167.27 ppm.$

3-(2-*Chlorobenzoyl*)-6-*nitro*-2(3*H*)-*benzoxazolone* (**1a10**, C₁₄H₇ClN₂O₅)

Yield 92%; m.p.: 133–135 °C; IR (KBr): $\bar{\nu} = 1,750, 1,712, 1,614 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.63-7.82$ (4H, m, 4Ar-H), 8.08 (1H, d, J = 7.89 Hz, 1Ar-H), 8.27 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 109.56, 113.38, 118.89, 120.65, 126.88, 128.16, 130.35, 137.59, 139.39, 142.39, 150.87, 167.64 ppm.$

6-Nitro-3-(4-nitrobenzoyl)-2(3H)-benzoxazolone (1a11, C₁₄H₇N₃O₇)

Yield 76%; m.p.: 232–234 °C; IR (KBr): $\bar{\nu} = 1,760, 1,699, 1,602 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_{δ}): $\delta = 7.83-8.09$ (3H, m, 3Ar-H), 8.24–8.38 (4H, m, 4Ar-H) ppm; ¹³C NMR (DMSO- d_{δ}): $\delta = 114.34, 116.63, 118.74, 123.58, 123.98, 128.22, 130.78, 137.41, 142.68, 150.18, 167.73 ppm.$

6-Bromo-3-propionyl-2(3H)-benzoxazolone (**1b2**, C₁₀H₈BrNO₃)

Yield 97%; m.p.: 145 °C; IR (KBr): $\bar{\nu} = 2,922, 1,803, 1,725, 1,618, 1,603 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{CDCl}_3): \delta = 1.29 (t, 1\text{CH}_3), 3.10 (q, 1\text{CH}_2), 7.38 (m, 2\text{Ar-H}), 7.93 (d, 1\text{Ar-H}) ppm; {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3): \delta = 7.99, 30.53, 113.33, 117.14, 117.89, 127.65, 127.86, 142.75, 151.25, 173.19 ppm.$

6-Bromo-3-(2-methylpropionyl)-2(3H)-benzoxazolone (**1b3**, C₁₁H₁₀BrNO₃)

Yield 93%; m.p.: 84 °C; IR (KBr): $\bar{\nu} = 2,973, 1,803, 1,719, 1,600 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{CDCl}_3): \delta = 1.31 (d, 2\text{CH}_3), 3.81 (m, 1\text{CH}), 7.38 (m, 2\text{Ar-H}), 7.97 (d, 1\text{Ar-H}) \text{ ppm}; {}^{13}\text{C} \text{NMR} (\text{CDCl}_3): \delta = 18.59, 34.02, 113.35, 117.26, 117.77, 127.70, 127.79, 142.64, 151.26, 176.66 ppm.$

6-Bromo-3-(2,2-dimethylpropionyl)-2(3H)-benzoxazolone (**1b4**, C₁₂H₁₂BrNO₃)

Yield 87%; m.p.: 74–76 °C; IR (KBr): $\bar{\nu} = 2,926, 1,780, 1,732, 1,619, 1,599 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.31$ (9H, s, 3CH₃), 7.38 (2H, m, 2Ar-H), 7.97 (1H, d, J = 7.79 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 17.24, 32.67, 112.01, 115.92, 116.43, 125.86, 126.44, 152.20, 175.31 ppm.$

6-Bromo-3-(phenylacetyl)-2(3H)-benzoxazolone (**1b5**, C₁₅H₁₀BrNO₃)

Yield 90%; m.p.: 175–177 °C; IR (KBr): $\bar{\nu} = 2,922, 1,755, 1,729, 1,620, 1,602 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 4.46$ (2H, s, 1CH₂), 7.26–7.46 (7H, m, 7Ar-H), 7.94 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 40.34, 111.06, 114.72, 115.62, 124.19, 125.21, 125.53, 126.31, 127.32, 129.72, 140.18, 148.21, 167.85 ppm.$

6-Bromo-3-(3-phenylpropionyl)-2(3H)-benzoxazolone (**1b6**, C₁₆H₁₂BrNO₃)

Yield 91%; m.p.: 125–127 °C; IR (KBr): $\bar{\nu} = 2,927, 1,798, 1,725, 1,621, 1,604 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 3.13$ (2H, t, 2CH₂), 3.42 (2H, t, 2CH₂), 7.18–7.47 (7H, m, 7Ar-H), 7.96 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 29.80, 38.38, 113.49, 117.11, 117.61, 126.30, 126.37, 127.90, 128.35, 128.46, 139.86, 142.64, 150.49, 171.44 ppm.$

6-Bromo-3-(3-methylbenzoyl)-2(3H)-benzoxazolone (**1b8**, C₁₅H₁₀BrNO₃)

Yield 87%; m.p.: 147–150 °C; IR (KBr): $\bar{\nu} = 2,923, 1,797, 1,711, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.48$ (3H, s, 1CH₃), 7.20–7.60 (6H, m, 6Ar-H), 7.97 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 19.46, 111.28, 113.69, 115.26, 125.24, 126.28, 126.73, 127.17, 127.62, 128.25, 140.59, 142.62, 143.13, 150.49, 164.85 ppm.$

6-Bromo-3-(4-methylbenzoyl)-2(3H)-benzoxazolone (**1b9**, C₁₅H₁₀BrNO₃)

Yield 93%; m.p.: 142–144 °C; IR (KBr): $\bar{\nu} = 2,923, 1,776, 1,693, 1,610, 1,600 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.46$ (3H, s, 1CH₃), 7.20–7.50 (6H, m, 6Ar-H), 7.95 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.85, 113.62, 116.98, 117.66, 127.70, 128.66, 129.14, 129.91, 143.09, 145.86, 152.19, 170.19 ppm.$

6-Bromo-3-(2-chlorobenzoyl)-2(3H)-benzoxazolone (**1b10**, C₁₄H₇BrClNO₃)

Yield 89%; m.p.: 90–92 °C; IR (KBr): $\bar{\nu} = 1,750, 1,708, 1,618, 1,590 \text{ cm}^{-1}$; ¹H NMR (DMSO-d₆): $\delta = 7.29-7.48$ (2H, m, 2Ar-H), 7.64–7.85 (4H, m, 4Ar-H), 8.07 (1H, d, J = 8.10 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-d₆): $\delta = 113.63, 116.89, 117.23, 127.78, 128.67, 129.43, 129.70, 130.14, 132.81, 142.89, 149.26, 167.92 ppm.$

3,6-Diacetyl-2(3H)-benzoxazolone (1c1, C₁₁H₉NO₄)

Yield 90%; m.p.: 158 °C; IR (KBr): $\bar{\nu} = 2,927, 1,802,$ 1,731, 1,677, 1,618, 1,604 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.65$ (s, 1CH₃), 2.89 (s, 1CH₃), 7.79 (s, 1Ar-H), 7.90 (d, 1Ar-H), 8.16 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 22.98, 24.59, 107.48, 113.58, 124.05, 129.76, 132.37,$ 142.18, 150.82, 173.72, 198.68 ppm.

6-Acetyl-3-propionyl-2(3H)-benzoxazolone (**1c2**, C₁₂H₁₁NO₄)

Yield 90%; m.p.: 167–169 °C; IR (KBr): $\bar{\nu} = 2,924, 1,775, 1,721, 1,680, 1,626 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.30$ (3H, t, 1CH₃), 2.62 (3H, s, 1CH₃), 3.17 (2H, q, 1CH₂), 7.82 (1H, s, 1Ar-H), 7.93 (1H, d, J = 7.78 Hz, 1Ar-H), 8.16 (1H, d, J = 7.78 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 7.91, 28.43, 30.58, 107.27, 113.40, 123.85, 129.43, 132.50, 141.98, 151.43, 172.35, 198.46 ppm.$

6-Acetyl-3-(2-methylpropionyl)-2(3H)-benzoxazolone (**1c3**, C₁₃H₁₃NO₄)

Yield 84%; m.p.: 127 °C; IR (KBr): $\bar{\nu} = 2,981, 1,805, 1,727, 1,680, 1,618, 1,600 \text{ cm}^{-1}; ^{1}\text{H} \text{ NMR} (CDCl_3):$ $<math>\delta = 1.45$ (d, 2CH₃), 2.62 (s, 1CH₃), 3.86 (m, 1CH), 7.80 (s, 1Ar-H), 7.87 (d, 1Ar-H), 8.12 (d, 1Ar-H) ppm; ¹³C NMR (CDCl_3): $\delta = 16.57, 24.48, 32.10, 107.26, 113.70, 123.86, 129.76, 132.39, 142.21, 150.75, 174.72, 198.59 ppm.$

$\begin{array}{l} 6\mbox{-}Acetyl\mbox{-}3\mbox{-}(2,2\mbox{-}dimethylpropionyl)\mbox{-}2(3H)\mbox{-}benzoxazolone \\ (1c4,\ C_{14}H_{15}NO_4) \end{array}$

Yield 84%; m.p.: 142–143 °C; IR (KBr): $\bar{\nu} = 2,929, 1,760, 1,720, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.32$ (9H, s, 3CH₃), 2.52 (3H, s, 1CH₃), 7.82 (1H, s, 1Ar-H), 7.84 (1H, d, J = 7.85 Hz, 1Ar-H), 8.13 (1H, d, J = 7.85 Hz, 1Ar-H), 8.13 (1H, d, J = 7.85 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 24.95, 24.37, 38.37, 107.41, 107.71, 123.42, 129.61, 132.18, 141.66, 152.79, 174.20, 194.71 ppm.$

6-Acetyl-3-(phenylacetyl)-2(3H)-benzoxazolone (**1c5**, C₁₇H₁₃NO₄)

Yield 91%; m.p.: 108–110 °C; IR (KBr): $\bar{\nu} = 2,930, 1,785, 1,700, 1,676, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.56$ (3H, s, 1CH₃), 4.44 (2H, s, 1CH₂), 7.24–7.39 (5H, m, 5Ar-H), 7.78–7.90 (2H, m, 2Ar-H), 8.10 (1H, d, J = 8.02 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 24.16, 36.08, 107.95, 113.21, 123.81, 126.24, 128.44, 128.91, 129.44, 132.17, 137.42, 140.02, 148.62, 169.17, 193.62 ppm.$

6-Acetyl-3-(3-phenylpropionyl)-2(3H)-benzoxazolone (**1c6**, C₁₈H₁₅NO₄)

Yield 93%; m.p.: 147–148 °C; IR (KBr): $\bar{\nu} = 2,938, 1,760, 1,699, 1,680, 1,603 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_{δ}): $\delta = 2.61$ (3H, s, 1CH₃), 3.05 (2H, t, 1CH₂), 3.29 (2H, t, 1CH₂), 7.11–7.32 (5H, m, 5Ar-H), 7.83–7.94 (2H, s, 2Ar-H), 8.11 (1H, d, J = 7.99 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_{δ}): $\delta = 21.86, 28.89, 37.82, 108.21, 115.22, 120.79, 124.13, 126.11, 128.19, 129.69, 132.88, 133.19, 142.29, 152.20, 171.96, 196.99 ppm.$

$\label{eq:constraint} 6-Acetyl-3-benzoyl-2(3H)-benzoxazolone$

$(1c7, C_{16}H_{11}NO_4)$

Yield 83%; m.p.: 63–65 °C; IR (KBr): $\bar{\nu} = 2,924, 1,790, 1,724, 1,670, 1,599 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.60$ (3H, s, 1CH₃), 7.40–7.70 (5H, m, 5Ar-H), 7.78–7.90 (2H,

m, 2Ar-H), 8.06 (1H, d, J = 7.92 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 24.37$, 107.50, 112.36, 123.69, 126.92, 127.46, 128.10, 128.36, 129.95, 132.37, 148.48, 165.21, 193.90 ppm.

6-Acetyl-3-(3-methylbenzoyl)-2(3H)-benzoxazolone (**1c8**, C₁₇H₁₃NO₄)

Yield 81%; m.p.: 69–70 °C; IR (KBr): $\bar{\nu} = 2,922, 1,785, 1,717, 1,671, 1,618 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (CDCl₃): $\delta = 2.50$ (3H, s, 1CH₃), 2.59 (3H, s, 1CH₃), 7.20–7.39 (4H, m, 4Ar-H), 7.78–7.91 (2H, m, 2Ar-H), 8.04 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; {}^{13}\text{C} NMR (CDCl₃): $\delta = 21.28, 26.55, 107.90, 112.63, 124.41, 127.39, 128.54, 128.85, 133.33, 133.54, 142.27, 150.69, 165.38, 193.95 ppm.$

6-Acetyl-3-(4-methylbenzoyl)-2(3H)-benzoxazolone (1c9, C₁₇H₁₃NO₄)

Yield 89%; m.p.: 89–91 °C; IR (KBr): $\bar{\nu} = 2,924, 1,775, 1,712, 1,677, 1,609 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.49$ (3H, s, 1CH₃), 2.58 (3H, s, 1CH₃), 7.21–7.38 (4H, m, 4Ar-H), 7.76–7.90 (2H, m, 2Ar-H), 8.02 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 20.07, 24.82, 107.92, 112.65, 124.46, 127.43, 127.81, 128.56, 128.86, 133.34, 133.58, 142.29, 150.72, 165.41, 194.21 ppm.$

6-Acetyl-3-(2-chlorobenzoyl)-2(3H)-benzoxazolone (**1c10**, C₁₆H₁₀ClNO₄)

Yield 87%; m.p.: 70–71 °C; IR (KBr): $\bar{\nu} = 2,939, 1,780, 1,718, 1,680, 1,619 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.62$ (3H, s, 1CH₃), 7.34–7.63 (4H, m, 4Ar-H), 7.80–7.94 (2H, m, 2Ar-H), 8.09 (1H, d, J = 8.00 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 26.82, 109.91, 115.34, 127.17, 128.15, 129.01, 130.04, 131.89, 132.82, 133.75, 134.42, 135.46, 142.29, 150.67, 160.61, 196.15 ppm.$

6-Acetyl-3-(4-nitrobenzoyl)-2(3H)-benzoxazolone (1c11, C₁₆H₁₀N₂O₆)

Yield 78%; m.p.: 111–113 °C; IR (KBr): $\bar{\nu} = 2,926, 1,760, 1,700, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 2.64$ (3H, s, 1CH₃), 7.79–7.99 (4H, m, 4Ar-H), 8.12 (1H, d, J = 8.09 Hz, 1Ar-H), 8.23–8.32 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 21.23, 108.28, 121.25, 123.60, 124.37, 128.40, 131.73, 136.08, 139.41, 142.99, 156.04, 165.63, 195.17 ppm.$

3-(2-Methylpropionyl)-6-nitro-2(3H)-benzothiazolone(2a3, C₁₁H₁₀N₂O₄S)

Yield 88%; m.p.: 142 °C; IR (KBr): $\bar{\nu} = 2,955, 2,877, 1,710, 1,675, 1,617 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.30$ (d, 2CH₃), 3.85 (m, 1CH), 8.18–8.23 (m, 2Ar-H), 8.31 (s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 18.71, 36.19, 117.19, 117.60, 122.58, 123.44, 139.46, 144.79, 169.83, 178.32 ppm.$

3-(2,2-Dimethylpropionyl)-6-nitro-2(3H)-benzothiazolone (**2a4**, C₁₂H₁₂N₂O₄S)

Yield 79%; m.p.: 218–219 °C; IR (KBr): $\bar{\nu} = 2,927, 1,709, 1,675, 1,602 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.46$ (9H, s, 3CH₃), 8.15 (1H, d, J = 7.98 Hz, 1Ar-H), 8.34 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 27.23, 44.75, 112.58, 118.70, 122.74, 124.66, 139.61, 142.36, 169.66, 172.91 ppm.$

6-Nitro-3-(phenylacetyl)-2(3H)-benzothiazolone

$(2a5, C_{15}H_{10}N_2O_4S)$

Yield 91%; m.p.: 236–238 °C; IR (KBr): $\bar{\nu} = 2,929, 1,709, 1,670, 1,619, 1,606 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 4.46$ (2H, s, 1CH₂), 7.16-7.50 (5H, m, 5Ar-H), 8.18 (1H, d, J = 7.75 Hz, 1Ar-H), 8.28–8.39 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 40.96, 116.82, 121.92, 123.42, 127.85, 128.81, 129.34, 129.68, 132.26, 139.12, 143.92, 169.53, 171.84 ppm.$

$\begin{array}{l} 6\text{-Nitro-3-(3-phenylpropionyl)-2(3H)-benzothiazolone} \\ \textbf{(2a6, } C_{16}H_{12}N_2O_4S) \end{array}$

Yield 91%; m.p.: 158 °C; IR (KBr): $\bar{\nu} = 2,944, 1,706, 1,668, 1,590 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 3.15$ (t, 1CH₂), 3.50 (t, 1CH₂), 7.10–7.34 (m, 5Ar-H), 8.09 (d, 1Ar-H), 8.34 (s, 1Ar-H), 8.43 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 30.29, 40.66, 117.65, 117.78, 122.73, 123.44, 126.55, 128.52, 128.64, 139.11, 139.77, 144.80, 169.84, 173.14 ppm.$

3-(3-Methylbenzoyl)-6-nitro-2(3H)-benzothiazolone (**2a8**, C₁₅H₁₀N₂O₄S)

Yield 89%; m.p.: 107–108 °C; IR (KBr): $\bar{\nu} = 2,929, 1,709, 1,660, 1,610 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 2.46$ (3H, s, 1CH₃), 7.27–7.75 (4H, m, 4Ar-H), 7.98 (1H, d, J = 7.92 Hz, 1Ar-H), 8.26–8.34 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 21.31, 114.21, 118.43, 122.64, 124.04, 127.67, 128.48, 130.80, 131.63, 135.34, 135.99, 139.13, 144.18, 168.34, 169.39 ppm.$

3-(4-Methylbenzoyl)-6-nitro-2(3H)-benzothiazolone (**2a9**, $C_{15}H_{10}N_2O_4S$)

Yield 94%; m.p.: 142–144 °C; IR (KBr): $\bar{\nu} = 2,929, 1,711, 1,660, 1,616 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.48$ (3H, s, 1CH₃), 7.29–7.79 (4H, m, 4Ar-H), 8.04 (1H, d, J = 7.98 Hz, 1Ar-H), 8.22–8.30 (2H, m, 2Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.99, 114.41, 118.41, 122.13, 124.02, 126.24, 128.74, 129.95, 130.75, 131.50, 135.78, 139.64, 145.58, 167.83, 169.87 ppm.$

3-(2-Chlorobenzoyl)-6-nitro-2(3H)-benzothiazolone (2a10, $C_{14}H_7CIN_2O_4S$)

Yield 92%; m.p.: 73–74 °C; IR (KBr): $\bar{\nu} = 1,719, 1,680, 1,618, 1,590 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.24-7.60$ (4H, m, 4Ar-H), 8.05 (1H, d, J = 8.05 Hz, 1Ar-H), 8.28–8.30 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6):

$$\begin{split} \delta &= 116.40, \ 118.14, \ 123.03, \ 123.81, \ 126.35, \ 127.50, \\ 130.05, \ 131.69, \ 133.67, \ 135.18, \ 138.22, \ 145.10, \ 168.45, \\ 171.73 \ \text{ppm}. \end{split}$$

6-Nitro-3-(4-nitrobenzoyl)-2(3H)-benzothiazolone (2a11, C₁₄H₇N₃O₆S)

Yield 75%; m.p.: 273–275 °C; IR (KBr): $\bar{\nu} = 1,689, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_{δ}): $\delta = 7.81-8.10$ (3H, m, 3Ar-H), 8.22–8.32 (4H, m, 4Ar-H) ppm; ¹³C NMR (DMSO- d_{δ}): $\delta = 114.93, 115.56, 121.24, 123.86, 124.87, 126.36, 134.52, 137.79, 142.23, 144.22, 165.86, 168.95 ppm.$

6-Bromo-3-(2,2-dimethylpropionyl)-2(3H)-benzothiazolone (**2b4**, C₁₂H₁₂BrNO₂S)

Yield 78%; m.p.: 218–219 °C; IR (KBr): $\bar{\nu} = 2,934, 1,690, 1,678, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.30$ (9H, s, 3CH₃), 7.36–7.58 (2H, m, 2Ar-H), 7.93 (1H, d, J = 7.97 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 25.24, 42.51, 111.40, 112.18, 122.98, 123.24, 127.40, 133.99, 167.85, 177.59 ppm.$

6-*Bromo-3-(phenylacetyl)-2(3H)-benzothiazolone* (**2b5**, C₁₅H₁₀BrNO₂S)

Yield 93%; m.p.: 73–75 °C; IR (KBr): $\bar{\nu} = 2,935, 1,700, 1,675, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 3.58$ (2H, s, 1CH₂), 7.20–7.54 (7H, m, 7Ar-H), 7.97 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 41.83, 114.29, 115.12, 126.19, 127.70, 129.16, 130.34, 130.49, 130.79, 136.16, 136.77, 170.54, 173.80 ppm.$

6-*Bromo-3-(3-phenylpropionyl)-2(3H)-benzothiazolone* (**2b6**, C₁₆H₁₂BrNO₂S)

Yield 95%; m.p.: 120–122 °C; IR (KBr): $\bar{\nu} = 2,929, 1,697, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 3.04$ (2H, t, 2CH₂), 3.46 (2H, t, 2CH₂), 7.17–7.35 (5H, m, 5Ar-H), 7.40–7.50 (2H, m, 2Ar-H), 7.97 (1H, d, J = 8.00 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 30.35, 40.63, 118.26, 119.21, 123.31, 124.48, 126.41, 128.55, 130.07, 133.66, 140.11, 142.77, 170.16, 173.13 ppm.$

6-Bromo-3-(3-methylbenzoyl)-2(3H)-benzothiazolone (**2b8**, C₁₅H₁₀BrNO₂S)

Yield 91%; m.p.: 93–95 °C; IR (KBr): $\bar{\nu} = 2,924, 1,705, 1,660, 1,604 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.49$ (3H, s, 1CH₃), 7.29–7.69 (6H, m, 6Ar-H), 8.03 (1H, d, J = 7.99 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 19.78, 116.28, 117.66, 124.51, 125.15, 127.75, 128.64, 129.49, 130.54, 133.84, 138.81, 168.63, 168.76 ppm.$

6-Bromo-3-(4-methylbenzoyl)-2(3H)-benzothiazolone (**2b9**, C₁₅H₁₀BrNO₂S)

Yield 90%; m.p.: 156 °C; IR (KBr): $\bar{\nu} = 2,923, 1,690, 1,678, 1,608 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{CDCl}_3): \delta = 2.50 (s, 1\text{CH}_3), 7.36 (m, 3\text{Ar-H}), 7.54 (d, 1\text{Ar-H}), 7.83 (m, 2\text{Ar-H}), 8.08 (d, 1\text{Ar-H}) \text{ ppm}; {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3): \delta = 21.33, 116.17,$

116.55, 124.31, 125.48, 129.21, 129.44, 129.65, 129.88, 130.50, 133.92, 145.50, 168.08, 168.58 ppm.

6-Bromo-3-(2-chlorobenzoyl)-2(3H)-benzothiazolone (**2b10**, C₁₄H₇BrClNO₂S)

Yield 95%; m.p.: 118–119 °C; IR (KBr): $\bar{\nu} = 1,703, 1,660, 1,618, 1,590 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.28-7.59$ (6H, m, 6Ar-H), 8.10 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 116.91, 117.61, 123.09, 123.85, 126.26, 128.45, 128.85, 129.23, 129.86, 131.33, 131.87, 133.35, 165.59, 167.76 ppm.$

6-Bromo-3-(4-nitrobenzoyl)-2(3H)-benzothiazolone (**2b11**, C₁₄H₇BrN₂O₄S)

Yield 71%; m.p.: 219–221 °C; IR (KBr): $\bar{\nu} = 1,690, 1,660, 1,604 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.42$ (2H, m, 2Ar-H), 7.82–7.98 (3H, m, 3Ar-H), 8.23–8.32 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 114.42, 116.62, 118.79, 123.82, 123.89, 128.32, 130.87, 137.49, 142.65, 167.83, 169.81 ppm.$

3,6-Diacetyl-2(3H)-benzothiazolone (2c1, C₁₁H₉NO₃S)

Yield 89%; m.p.: 138 °C; IR (KBr): $\bar{\nu} = 2,973, 1,716, 1,675, 1,618, 1,595 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.59$ (s, 1CH₃), 2.76 (s, 1CH₃), 7.87 (s, 1Ar-H), 8.04 (d, 1Ar-H), 8.38 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 23.98, 24.83, 115.01, 119.51, 125.21, 131.80, 134.67, 138.78, 171.16, 175.62, 196.74 ppm.$

6-Acetyl-3-propionyl-2(3H)-benzothiazolone (**2c2**, C₁₂H₁₁NO₃S)

Yield 87%; m.p.: 115 °C; IR (KBr): $\bar{v} = 2,983, 2,924,$ 1,725, 1,682, 1,679, 1,617 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.30$ (t, 1CH₃), 2.60 (s, 1CH₃), 3.12 (q, 1CH₂), 7.83 (s, 1Ar-H), 8.03 (d, 1Ar-H), 8.34 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 9.15, 27.12, 33.38, 118.06, 122.66, 123.41,$ 128.30, 134.80, 138.90, 171.28, 175.63, 196.76 ppm.

6-Acetyl-3-(2-methylpropionyl)-2(3H)-benzothiazolone (**2c3**, C₁₃H₁₃NO₃S)

Yield 76%; m.p.: 90–91 °C; IR (KBr): $\bar{\nu} = 2,936, 1,708, 1,685, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.31$ (6H, d, 2CH₃), 2.68 (3H, s, 1CH₃), 3.83 (1H, m, 1CH), 7.94–8.00 (2H, m, 2Ar-H), 8.14 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 19.88, 26.48, 37.20, 117.89, 123.10, 123.87, 128.59, 135.06, 139.50, 170.48, 179.66, 197.10 ppm.$

6-Acetyl-3-(2,2-dimethylpropionyl)-2(3H)-benzothiazolone (**2c4**, C₁₄H₁₅NO₃S)

Yield 78%; m.p.: 179–180 °C; IR (KBr): $\bar{\nu} = 2,930, 1,713, 1,668, 1,618, 1,597 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d*₆): $\delta = 1.38$ (9H, s, 3CH₃), 2.58 (3H, s, 1CH₃), 7.89–7.96 (2H, m, 2Ar-H), 8.13 (1H, d, *J* = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-*d*₆): $\delta = 24.86, 25.57, 39.42, 117.79, 123.16, 123.85, 128.49, 135.26, 139.45, 169.87, 173.96, 196.89 ppm.$

6-Acetyl-3-(phenylacetyl)-2(3H)-benzothiazolone (**2c5**, C₁₇H₁₃NO₃S)

Yield 83%; m.p.: 72–74 °C; IR (KBr): $\bar{\nu} = 2,940, 1,700, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.58$ (3H, s, 1CH₃), 4.46 (2H, s, 1CH₂), 7.23–7.42 (5H, m, 5Ar-H), 7.84–7.92 (2H, m, 2Ar-H), 8.09 (1H, d, J = 7.65 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 23.96, 36.86, 114.34, 119.59, 120.52, 124.13, 125.19, 126.09, 126.28, 131.72, 135.74, 138.16, 167.87, 169.76, 194.54 ppm.$

6-Acetyl-3-(3-phenylpropionyl)-2(3H)-benzothiazolone (**2c6**, C₁₈H₁₅NO₃S)

Yield 82%; m.p.: 118–119 °C; IR (KBr): $\bar{\nu} = 2,934, 1,698, 1,675, 1,601 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.60$ (3H, s, 1CH₃), 3.09 (2H, t, 1CH₂), 3.47 (2H, t, 1CH₂), 7.20–7.29 (5H, m, 5Ar-H), 7.89–7.99 (2H, m, 2Ar-H), 8.13 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 24.04, 27.95, 38.23, 114.37, 119.61, 120.32, 124.03, 125.21, 126.12, 126.18, 131.81, 135.86, 137.60, 168.57, 170.86, 193.64 ppm.$

6-Acetyl-3-benzoyl-2(3H)-benzothiazolone (2c7, C₁₆H₁₁NO₃S)

Yield 69%; m.p.: 68–70 °C; IR (KBr): $\bar{\nu} = 2,934, 1,710, 1,685, 1,600 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.62$ (3H, s, 1CH₃), 7.43–7.79 (5H, m, 5Ar-H), 7.81–7.98 (2H, m, 2Ar-H), 8.09 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 23.97, 107.85, 112.46, 123.67, 126.66, 127.13, 128.00, 128.35, 129.85, 131.39, 132.31, 169.78, 170.16, 194.35 ppm.$

6-Acetyl-3-(3-methylbenzoyl)-2(3H)-benzothiazolone (**2c8**, C₁₇H₁₃NO₃S)

Yield 84%; m.p.: 79–80 °C; IR (KBr): $\bar{\nu} = 2,929, 1,698, 1,672, 1,618, 1,604 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (CDCl₃): $\delta = 2.50$ (3H, s, 1CH₃), 2.61 (3H, s, 1CH₃), 7.21–7.38 (4H, m, 4Ar-H), 7.80–7.90 (2H, m, 2Ar-H), 8.06 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; {}^{13}\text{C} NMR (CDCl₃): $\delta = 20.05, 25.19, 110.73, 112.69, 124.45, 127.52, 127.63, 128.07, 129.48, 133.32, 134.10, 137.89, 166.57, 170.91, 194.25 ppm.$

$\begin{array}{l} 6\mbox{-}Acetyl\mbox{-}3\mbox{-}(4\mbox{-}methylbenzoyl)\mbox{-}2(3H)\mbox{-}benzothiazolone\\ \textbf{(2c9, }C_{17}H_{13}NO_3S) \end{array}$

Yield 91%; m.p.: 85–86 °C; IR (KBr): $\bar{\nu} = 2,924, 1,712, 1,677, 1,608 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.47$ (3H, s, 1CH₃), 2.61 (3H, s, 1CH₃), 7.30–7.68 (4H, m, 4Ar-H), 7.77–7.96 (2H, m, 2Ar-H), 8.05 (1H, d, J = 8.10 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.35, 26.48, 114.30, 122.77, 126.74, 127.52, 129.59, 129.67, 130.15, 130.64, 145.58, 146.24, 162.87, 169.89, 194.42 ppm.$

6-Acetyl-3-(2-chlorobenzoyl)-2(3H)-benzothiazolone (**2c10**, C₁₆H₁₀ClNO₃S)

Yield 89%; m.p.: 89–90 °C; IR (KBr): $\bar{v} = 2,934, 1,719, 1,675, 1,619 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d*₆): $\delta = 2.54$ (3H, s,

1CH₃), 7.37–7.68 (4H, m, 4Ar-H), 7.76–7.92 (2H, m, 2Ar-H), 8.11 (1H, d, J = 7.89 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 25.98$, 110.19, 114.89, 127.19, 128.33, 129.10, 130.83, 131.94, 132.71, 133.84, 134.58, 135.44, 136.87, 165.84, 167.76, 194.85 ppm.

6-Acetyl-3-(4-nitrobenzoyl)-2(3H)-benzothiazolone (2c11, C₁₆H₁₀N₂O₅S)

Yield 70%; m.p.: 117–119 °C; IR (KBr): $\bar{\nu} = 2,959, 1,718, 1,670, 1,610 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 2.59$ (3H, s, 1CH₃), 7.81–7.98 (4H, m, 4Ar-H), 8.08 (1H, d, J = 8.01 Hz, 1Ar-H), 8.20–8.27 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 24.23, 115.42, 118.75, 123.79, 125.32, 128.39, 130.82, 131.78, 137.59, 139.53, 142.45, 166.23, 168.57, 195.17 ppm.$

$\label{eq:2.1} 3-Acetyl-6-propionyl-2(3H)-benzox azolone$

$(3c1, C_{12}H_{11}NO_4)$

Yield 86%; m.p.: 180–182 °C; IR (KBr): $\bar{\nu} = 2,938, 1,785, 1,732, 1,678, 1,598 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.24$ (3H, t, 1CH₃), 2.80 (3H, s, 1CH₃), 2.98 (2H, q, 1CH₂), 7.80 (1H, s, 1Ar-H), 7.90 (1H, d, J = 7.98 Hz, 1Ar-H), 8.14 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 8.18, 24.97, 31.85, 109.29, 115.56, 124.49, 131.13, 134.43, 142.35, 151.36, 169.26, 198.67 ppm.$

3,6-Dipropionyl-2(3H)-benzoxazolone

 $(3c2, C_{13}H_{13}NO_4)$

Yield 89%; m.p.: 174 °C; IR (KBr): $\bar{\nu} = 2,977, 2,939,$ 1,802, 1,730, 1,678, 1,618, 1,601 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.25$ (t, 1CH₃), 1.35 (t, 1CH₃), 3.05 (q, 1CH₂), 3.85 (q, 1CH₂), 7.80 (s, 1Ar-H), 7.90 (d, 1Ar-H), 8.18 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 7.93, 8.20, 30.58, 31.85,$ 109.27, 115.56, 125.48, 131.67, 134.29, 142.81, 150.73, 173.24, 198.68 ppm.

3-(2-Methylpropionyl)-6-propionyl-2(3H)-benzoxazolone(**3c3**, C₁₄H₁₅NO₄)

Yield 88%; m.p.: 115 °C; IR (KBr): $\bar{\nu} = 2,975, 2,939,$ 1,809, 1,725, 1,683, 1,618, 1,599 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.25$ (t, 1CH₃), 1.35 (d, 2CH₃), 3.05 (q, 1CH₂), 3.85 (m, 1CH), 7.80 (s, 1Ar-H), 7.90 (d, 1Ar-H), 8.18 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.20, 18.68, 31.85, 34.19,$ 109.20, 115.80, 125.42, 131.68, 134.30, 142.80, 150.72, 176.82, 198.68 ppm.

3-(2,2-Dimethylpropionyl)-6-propionyl-2(3H)-benzoxazolone (**3c4**, C₁₅H₁₇NO₄)

Yield 79%; m.p.: 111–113 °C; IR (KBr): $\bar{\nu} = 2,930, 1,775, 1,720, 1,670, 1,618, 1,598 \text{ cm}^{-1}; ^{1}\text{H} \text{ NMR} (CDCl_3): <math>\delta = 1.23$ (3H, t, 1CH₃), 1.50 (9H, s, 3CH₃), 3.00 (2H, q, 1CH₂), 7.79 (1H, s, 1Ar-H), 7.88 (1H, d, J = 7.88 Hz, 1Ar-H), 8.14 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.21, 26.17, 31.83, 37.98, 109.17, 115.72,$

125.11, 132.94, 133.97, 142.22, 150.21, 178.17, 198.73 ppm.

3-(Phenylacetyl)-6-propionyl-2(3H)-benzoxazolone (**3c5**, C₁₈H₁₅NO₄)

Yield 89%; m.p.: 101–102 °C; IR (KBr): $\bar{\nu} = 2,943, 1,785, 1,725, 1,662, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.24$ (3H, t, 1CH₃), 2.95 (2H, q, 1CH₂), 4.43 (2H, s, 1CH₂), 7.19–7.51 (5H, m, 5Ar-H), 7.81 (1H, s, 1Ar-H), 8.00–8.20 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 8.19, 30.81, 42.81, 109.95, 111.18, 116.26, 123.28, 123.37, 125.40, 126.74, 128.76, 131.24, 141.10, 151.43, 170.43, 198.71 ppm.$

3-(3-Phenylpropionyl)-6-propionyl-2(3H)-benzoxazolone (**3c6**, C₁₉H₁₇NO₄)

Yield 88%; m.p.: 177–179 °C; IR (KBr): $\bar{\nu} = 2,939, 1,785, 1,729, 1,677, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.23$ (3H, t, 1CH₃), 2.93 (2H, q, 1CH₂), 3.13 (2H, t, 1CH₂), 3.44 (2H, t, 1CH₂), 7.19–7.36 (5H, m, 5Ar-H), 7.80 (1H, s, 1Ar-H), 8.00–8.15 (2H, m, 2Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.00, 29.62, 31.67, 38.29, 109.10, 115.42, 125.28, 126.34, 128.36, 128.45, 131.04, 134.21, 139.64, 142.25, 150.87, 171.98, 198.48 ppm.$

3-Benzoyl-6-propionyl-2(3H)-benzoxazolone (**3c7**, C₁₇H₁₃NO₄)

Yield 83%; m.p.: 118–120 °C; IR (KBr): $\bar{\nu} = 2,928, 1,784, 1,698, 1,663, 1,617 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.19$ (3H, t, 1CH₃), 3.03 (2H, q, 2CH₂), 7.39–7.61 (5H, m, 5Ar-H), 7.79–7.96 (2H, m, 2Ar-H), 8.15 (1H, d, *J* = 8.02 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 9.09, 31.28, 109.11, 114.48, 124.64, 126.32, 128.43, 128.45, 129.41, 133.19, 135.68, 142.40, 150.40, 167.56, 198.87 ppm.$

3-(3-Methylbenzoyl)-6-propionyl-2(3H)-benzoxazolone (**3c8**, C₁₈H₁₅NO₄)

Yield 84%; m.p.: 87–89 °C; IR (KBr): $\bar{\nu} = 2,925, 1,787, 1,703, 1,675, 1,603, 1,590 \text{ cm}^{-1}; ^{1}\text{H} NMR (DMSO-$ *d₆* $): <math>\delta = 1.25$ (3H, t, 1CH₃), 2.47 (3H, s, 1CH₃), 2.97 (2H, q, 1CH₂), 7.19–7.40 (2H, m, 2Ar-H), 7.71–7.92 (4H, m, 4Ar-H), 8.12 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 7.79, 21.43, 30.98, 109.14, 114.42, 124.22, 128.79, 129.85, 130.24, 133.69, 134.27, 139.44, 142.41, 150.23, 166.74, 198.34 ppm.$

3-(4-Methylbenzoyl)-6-propionyl-2(3H)-benzoxazolone (**3c9**, $C_{18}H_{15}NO_4$)

Yield 93%; m.p.: 160–162 °C; IR (KBr): $\bar{\nu} = 2,920, 1,772, 1,695, 1,670, 1,610 \text{ cm}^{-1}; {}^{1}\text{H} \text{NMR} (\text{CDCl}_3): \delta = 1.26 (3H, t, 1CH_3), 2.46 (3H, s, 1CH_3), 2.98 (2H, q, 1CH_2), 7.20–7.39 (2H, m, 2Ar-H), 7.70–7.90 (4H, m, 4Ar-H), 8.09 (1H, s, 1Ar-H) ppm; {}^{13}\text{C} \text{NMR} (\text{CDCl}_3): \delta = 7.84, 21.46, 31.47, 109.16, 114.45, 124.23, 128.83, 129.87, 130.26, 133.79, 134.28, 139.54, 142.46, 150.25, 166.84, 198.36 ppm.$

3-(2-Chlorobenzoyl)-6-propionyl-2(3H)-benzoxazolone (3c10, $C_{17}H_{12}CINO_4$)

Yield 92%; m.p.: 82–84 °C; IR (KBr): $\bar{\nu} = 2,927, 1,781, 1,718, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.21$ (3H, t, 1CH₃), 2.93 (2H, q, 1CH₂), 7.30–7.93 (6H, m, 6Ar-H), 8.03 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 8.20, 31.89, 109.53, 115.13, 125.59, 126.61, 129.78, 130.82, 131.39, 132.61, 134.74, 142.73, 149.79, 165.49, 198.67 ppm.$

3-(4-Nitrobenzoyl)-6-propionyl-2(3H)-benzoxazolone (**3c11**, C₁₇H₁₂N₂O₆)

Yield 75%; m.p.: 153–155 °C; IR (KBr): $\bar{\nu} = 2,938, 1,766, 1,710, 1,680, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.21$ (3H, t, 1CH₃), 2.98 (2H, q, 1CH₂), 7.80–7.98 (4H, m, 4Ar-H), 8.09 (1H, d, J = 8.02 Hz, 1Ar-H), 8.21–8.29 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 8.13, 31.49, 108.38, 121.54, 123.56, 124.35, 128.42, 131.69, 136.18, 139.43, 142.89, 147.98, 153.24, 166.36, 194.27 ppm.$

3-Acetyl-6-propionyl-2(3H)-benzothiazolone

$(4c1, C_{12}H_{11}NO_3S)$

Yield 92%; m.p.: 119–120 °C; IR (KBr): $\bar{\nu} = 2,942, 1,717, 1,670, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.29$ (3H, t, 1CH₃), 2.76 (3H, s, 1CH₃), 2.98 (2H, q, 2CH₂), 7.90–7.98 (2H, m, 2Ar-H), 8.03 (1H, d, J = 7.97 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 8.04, 27.20, 31.67, 117.37, 121.56, 122.44, 127.41, 133.86, 140.56, 170.18, 173.25, 194.35 ppm.$

$\label{eq:2-Methylpropionyl} \begin{array}{l} \mbox{-}6\mbox{-}propionyl\mbox{-}2(3H)\mbox{-}benzothiazolone \\ \mbox{(4c3, $C_{14}H_{15}NO_3S)$} \end{array}$

Yield 84%; m.p.: 119 °C; IR (KBr): $\bar{\nu} = 2,977, 2,936, 2,910, 1,729, 1,682, 1,677, 1,618, 1,592 cm⁻¹; ¹H NMR (CDCl₃): <math>\delta = 1.20$ –1.40 (m, 3CH₃), 2.96 (q, 1CH₂), 3.87 (m, 1CH), 7.93 (s, 1Ar-H), 8.04 (d, 1Ar-H), 8.16 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.01, 18.69, 31.56, 36.00, 116.70, 121.68, 122.65, 126.95, 133.67, 138.14, 170.01, 173.23, 198.29 ppm.$

3-(2,2-Dimethylpropionyl)-6-propionyl-2(3H)-benzo-thiazolone (4c4, C₁₅H₁₇NO₃S)

Yield 83%; m.p.: 103–104 °C; IR (KBr): $\bar{\nu} = 2,940, 1,704, 1,676, 1,618, 1,599 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.17$ (9H, m, 3CH₃), 1.38 (3H, t, 1CH₃), 2.96 (2H, q, 1CH₂), 7.80–7.95 (2H, m, 2Ar-H), 8.12 (1H, d, J = 7.78 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 5.92, 24.67, 28.61, 37.83, 108.89, 114.97, 120.79, 124.46, 129.63, 138.12, 168.15, 175.18, 197.39 ppm.$

3-(Phenylacetyl)-6-propionyl-2(3H)-benzothiazolone (**4c5**, C₁₈H₁₅NO₃S)

Yield 90%; m.p.: 164–166 °C; IR (KBr): $\bar{\nu} = 2,942, 1,701, 1,661, 1,592 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.27$ (3H, t, 1CH₃), 2.89 (2H, q, 2CH₂), 4.46 (2H, s, 1CH₂), 7.21–7.49

(5H, m, 5Ar-H), 7.81–8.00 (1H, m, 1Ar-H), 8.14 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 7.95$, 28.58, 41.98, 117.58, 121.63, 122.87, 125.98, 127.29, 128.23, 128.72, 134.34, 137.56, 139.76, 169.57, 172.39, 198.18 ppm.

3-(3-Phenylpropionyl)-6-propionyl-2(3H)-benzothiazolone (**4c6**, C₁₉H₁₇NO₃S)

Yield 91%; m.p.: 100–103 °C; IR (KBr): $\bar{\nu} = 2,939, 1,699, 1,674, 1,618 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.24$ (3H, t, CH₃), 2.93 (2H, q, CH₂), 3.10 (2H, t, CH₂), 3.47 (2H, t, 1CH₂), 7.20–7.40 (5H, m, 5Ar-H), 7.86–7.98 (2H, m, 2Ar-H), 8.14 (1H, m, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.18, 30.42, 31.76, 40.71, 117.42, 121.32, 122.74, 126.47, 127.19, 128.37, 128.62, 134.16, 137.36, 140.06, 169.85, 173.29, 198.27 ppm.$

$\label{eq:3-Benzoyl-6-propionyl-2(3H)-benzothiazolone} (4c7, \ C_{17}H_{13}NO_3S)$

Yield 78%; m.p.: 19–21 °C; IR (KBr): $\bar{\nu} = 2,934, 1,698, 1,670, 1,617 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.19$ (3H, t, CH₃), 3.02 (2H, q, CH₂), 7.36–7.62 (5H, m, Ar–H), 7.78–7.96 (2H, m, Ar–H), 8.15 (1H, d, J = 7.99 Hz, Ar–H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 7.27, 30.78, 113.23, 121.16, 126.19, 127.90, 128.16, 129.25, 131.20, 132.77, 133.69, 137.19, 167.62, 168.22, 197.79 ppm.$

$\label{eq:3-Methylbenzoyl} \begin{array}{l} 3-(3-Methylbenzoyl)-6-propionyl-2(3H)-benzothiazolone \\ \textbf{(4c8, } C_{18}H_{15}NO_3S\textbf{)} \end{array}$

Yield 86%; m.p.: 39–41 °C; IR (KBr): $\bar{\nu} = 2,925, 1,714, 1,675, 1,618 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.23$ (3H, t, 1CH₃), 2.42 (3H, s, 1CH₃), 2.95 (2H, q, 1CH₂), 7.41–7.63 (4H, m, 4Ar-H), 7.82–7.98 (2H, m, 2Ar-H), 8.10 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 8.90, 22.61, 32.40, 114.87, 123.17, 124.63, 126.91, 127.76, 130.25, 132.79, 134.26, 139.39, 142.32, 163.23, 169.82, 197.84 ppm.$

3-(4-Methylbenzoyl)-6-propionyl-2(3H)-benzothiazolone (4c9, $C_{18}H_{15}NO_3S$)

Yield 89%; m.p.: 101–103 °C; IR (KBr): $\bar{\nu} = 2,922, 1,712, 1,675, 1,609 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.26$ (3H, t, 1CH₃), 2.48 (3H, s, 1CH₃), 2.99 (2H, q, 1CH₂), 7.40–7.62 (4H, m, 4Ar-H), 7.80–7.96 (2H, m, 2Ar-H), 8.11 (1H, s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 8.34, 21.28, 31.74, 114.29, 122.64, 126.82, 127.56, 128.14, 130.69, 132.13, 133.72, 137.96, 138.62, 162.77, 170.14, 198.64 ppm.$

3-(2-*Chlorobenzoyl*)-6-*propionyl*-2(3*H*)-*benzothiazolone* (**4c10**, C₁₇H₁₂ClNO₃S)

Yield 90%; m.p.: 85–87 °C; IR (KBr): $\bar{\nu} = 2,937, 1,701, 1,679, 1,619 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{DMSO-}d_6): \delta = 1.24 (3\text{H, t}, 1\text{CH}_3), 2.96 (2\text{H, q}, 1\text{CH}_2), 7.39–7.93 (6\text{H, m, 6Ar-H}), 8.16 (1\text{H, s}, 1\text{Ar-H}) \text{ ppm; }{}^{13}\text{C} \text{ NMR} (\text{DMSO-}d_6): \delta = 8.12, 31.70, 116.00, 122.15, 126.88, 127.34, 127.90, 129.90, 130.96, 132.65, 132.94, 134.24, 135.08, 137.69, 166.66, 169.19, 198.70 ppm.$

3-(4-Nitrobenzoyl)-6-propionyl-2(3H)-benzothiazolone (4c11, C₁₇H₁₂N₂O₅S)

Yield 57%; m.p.: 138–140 °C; IR (KBr): $\bar{\nu} = 2,939, 1,681, 1,673, 1,618, 1,602 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.22$ (3H, t, 1CH₃), 2.97 (2H, q, 1CH₂), 7.83–7.99 (4H, m, 4Ar-H), 8.12 (1H, d, J = 7.85 Hz, 1Ar-H), 8.20–8.28 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 8.32, 31.38, 116.32, 119.45, 123.69, 124.93, 128.29, 130.85, 131.68, 137.57, 139.73, 142.58, 166.32, 169.67, 194.85 ppm.$

6-Benzoyl-3-propionyl-2(3H)-benzoxazolone

$({\bf 5c2},\,C_{17}H_{13}NO_4)$

Yield 82%; m.p.: 189–191 °C; IR (KBr): $\bar{\nu} = 2,947, 1,800, 1,732, 1,645, 1,597 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.30$ (3H, t, 1CH₃), 3.20 (2H, q, 1CH₂), 7.39–7.82 (7H, m, 7Ar-H), 8.16 (1H, d, J = 7.94 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 7.94, 30.59, 111.71, 115.34, 127.78, 128.90, 129.92, 131.10, 132.75, 134.76, 137.13, 142.16, 151.12, 173.25, 194.75 ppm.$

6-Benzoyl-3-(2-methylpropionyl)-2(3H)-benzoxazolone (**5c3**, C₁₈H₁₅NO₄)

Yield 85%; m.p.: 137 °C; IR (KBr): $\bar{\nu} = 2,936, 1,790, 1,724, 1,652, 1,597, 1,578 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.48$ (d, 2CH₃), 3.86 (m, 1CH), 7.36–7.48 (m, 2Ar-H), 7.54 (d, 1Ar-H), 7.76–7.68 (m, 4Ar-H), 8.14 (d, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 18.57, 34.09, 111.13, 115.46, 127.62, 128.38, 129.81, 131.32, 132.63, 133.44, 134.62, 137.03, 142.08, 150.58, 176.72, 194.68 ppm.$

$\begin{array}{l} 6\mbox{-}Benzoyl\mbox{-}3\mbox{-}(2,2\mbox{-}dimethylpropionyl)\mbox{-}2(3H)\mbox{-}benzoxazolone} \\ ({\bf 5c4},\,C_{19}H_{17}NO_4) \end{array}$

Yield 73%; m.p.: 103–105 °C; IR (KBr): $\bar{\nu} = 2,936, 1,790, 1,725, 1,652, 1,598 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.50$ (9H, s, 3CH₃), 7.40–7.85 (7H, s, 7Ar-H), 7.98 (1H, d, J = 8.02 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 26.19, 42.95, 109.37, 111.38, 111.49, 115.82, 127.70, 129.85, 132.52, 137.52, 142.45, 152.37, 167.72, 195.17 ppm.$

6-Benzoyl-3-(phenylacetyl)-2(3H)-benzoxazolone (**5c5**, C₂₂H₁₅NO₄)

Yield 85%; m.p.: 133–136 °C; IR (KBr): $\bar{\nu} = 2,914, 1,753, 1,700, 1,651, 1,615, 1,598 \text{ cm}^{-1}; ^{1}\text{H} NMR (DMSO-d_6): \delta = 4.49 (2H, s, 1CH_2), 7.30–7.80 (12H, m, 12Ar-H), 8.14 (1H, s, 1Ar-H) ppm; ^{13}C NMR (DMSO-d_6): \delta = 42.77, 111.41, 115.32, 127.59, 127.69, 128.38, 128.68, 129.69, 129.79, 130.95, 132.01, 132.64, 134.83, 136.95, 142.03, 150.88, 170.33, 194.54 ppm.$

6-Benzoyl-3-(3-phenylpropionyl)-2(3H)-benzoxazolone (**5c6**, C₂₃H₁₇NO₄)

Yield 87%; m.p.: 139–140 °C; IR (KBr): $\bar{\nu} = 2,931, 1,775, 1,724, 1,650, 1,597 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 3.11$ (2H, t, 1CH₂), 3.45 (2H, t, 1CH₂), 7.20–7.38 (5H, m, 5Ar-

H), 7.60–7.80 (7H, m, 7Ar-H), 8.14 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO-d₆): $\delta = 29.85$, 38.51, 111.17, 115.43, 126.59, 127.80, 128.34, 128.67, 129.96, 131.02, 132.80, 134.69, 137.14, 139.85, 142.17, 151.66, 171.24, 194.24 ppm.

6-Benzoyl-3-(3-methylbenzoyl)-2(3H)-benzoxazolone (**5c8**, C₂₂H₁₅NO₄)

Yield 82%; m.p.: 164–166 °C; IR (KBr): $\bar{\nu} = 2,917, 1,754, 1,705, 1,640, 1,594 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.43$ (3H, s, 1CH₃), 7.30–7.50 (4H, m, 4Ar-H), 7.62–7.85 (7H, m, 7Ar-H), 7.94 (1H, s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.32, 111.53, 114.28, 126.62, 127.65, 128.35, 128.51, 129.95, 130.18, 131.79, 132.76, 134.74, 137.18, 138.50, 142.68, 150.72, 167.63, 194.76 ppm.$

6-Benzoyl-3-(4-methylbenzoyl)-2(3H)-benzoxazolone (**5c9**, C₂₂H₁₅NO₄)

Yield 89%; m.p.: 185–187 °C; IR (KBr): $\bar{\nu} = 2,921, 1,785, 1,712, 1,645, 1,609 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.42$ (3H, s, 1CH₃), 7.29–7.49 (4H, m, 4Ar-H), 7.61–7.83 (7H, m, 7Ar-H), 7.93 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.11, 110.83, 113.44, 126.84, 127.72, 128.11, 128.45, 129.16, 129.31, 131.95, 132.35, 134.68, 137.20, 138.52, 142.58, 151.12, 167.60, 194.69 ppm.$

6-Benzoyl-3-(2-chlorobenzoyl)-2(3H)-benzoxazolone (**5c10**, C₂₁H₁₂ClNO₄)

Yield 85%; m.p.: 182–184 °C; IR (KBr): $\bar{\nu} = 1,775, 1,703, 1,651, 1,597 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 7.34-7.85$ (11H, m, 11Ar-H), 7.96 (1H, s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 111.60, 114.24, 127.25, 127.85, 128.54, 128.61, 129.97, 130.04, 131.16, 132.53, 132.91, 133.13, 135.31, 142.62, 151.24, 165.64, 194.38 ppm.$

6-Benzoyl-3-(4-nitrobenzoyl)-2(3H)-benzoxazolone (5c11, C₂₁H₁₂N₂O₆)

Yield 68%; m.p.: 155–158 °C; IR (KBr): $\bar{\nu} = 1,760$, 1,704, 1,650, 1,617 cm⁻¹; ¹H NMR (DMSO-*d₆*): $\delta = 7.42-7.84$ (7H, m, 7Ar-H), 8.10–8.24 (3H, m, 3Ar-H), 8.31 (2H, m, 2Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 111.63$, 114.68, 123.80, 125.59, 128.65, 128.98, 129.58, 131.48, 132.04, 132.58, 134.24, 136.85, 142.73, 150.92, 167.29, 194.27 ppm.

6-Benzoyl-3-propionyl-2(3H)-benzothiazolone (**6c2**, C₁₇H₁₃NO₃S)

Yield 76%; m.p.: 104–106 °C; IR (KBr): $\bar{\nu} = 2,946, 1,698, 1,660, 1,645, 1,597 \text{ cm}^{-1}$; ¹H NMR (DMSO-*d₆*): $\delta = 1.32$ (3H, t, 1CH₃), 3.16 (2H, q, 1CH₂), 7.43–7.82 (7H, m, 7Ar-H), 8.13 (1H, d, J = 7.88 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO-*d₆*): $\delta = 8.18, 30.42, 117.42, 121.32, 122.74, 126.47, 127.19, 128.37, 128.62, 134.16, 137.36, 140.06, 169.85, 173.29, 198.27 ppm.$

6-Benzoyl-3-(2-methylpropionyl)-2(3H)-benzoxazolone (**6c3**, C₁₈H₁₅NO₃S)

Yield 70%; m.p.: 110–111 °C; IR (KBr): $\bar{\nu} = 2,934, 1,698, 1,670, 1,648, 1,618, 1,595 \text{ cm}^{-1}; ^1\text{H} NMR (CDCl_3): <math>\delta = 1.28$ (6H, m, 2CH₃), 3.87 (1H, m, 1CH), 7.43–7.83 (7H, m, 7Ar-H), 8.15 (1H, d, J = 8.01 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 18.86, 36.19, 116.60, 123.83, 127.59, 128.47, 129.32, 129.91, 132.70, 134.20, 137.26, 139.86, 169.98, 172.19, 196.37 ppm.$

6-Benzoyl-3-(2,2-dimethylpropionyl)-2(3H)-benzothiazolone (**6c4**, C₁₉H₁₇NO₃S)

Yield 72%; m.p.: 191–193 °C; IR (KBr): $\bar{\nu} = 2,939, 1,699, 1,684, 1,640, 1,619 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 1.48$ (9H, s, 3CH₃), 7.42–7.85 (7H, m, 7Ar-H), 8.09 (1H, d, J = 7.98 Hz, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 25.98, 42.83, 111.14, 123.80, 124.81, 128.49, 128.94, 129.41, 131.32, 132.31, 137.36, 140.20, 168.78, 170.63, 194.42 ppm.$

6-Benzoyl-3-(phenylacetyl)-2(3H)-benzothiazolone (6c5, C₂₂H₁₅NO₃S)

Yield 90%; m.p.: 53–55 °C; IR (KBr): $\bar{\nu} = 2,926, 1,699, 1,670, 1,647, 1,618, 1,598 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 4.46$ (2H, s, 1CH₂), 7.14–7.39 (4H, m, 4Ar-H), 7.43–7.80 (7H, m, 7Ar-H), 7.98 (1H, s, 1Ar-H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 41.14, 116.39, 120.93, 122.68, 124.37, 127.34, 128.44, 128.75, 129.32, 129.39, 130.18, 132.30, 133.49, 136.75, 137.34, 139.92, 169.34, 171.23, 194.53 ppm.$

$\begin{array}{l} 6\text{-}\textit{Benzoyl-3-(3-phenylpropionyl)-2(3H)-benzothiazolone} \\ \textbf{(6c6, } C_{23}H_{17}NO_3S\textbf{)} \end{array}$

Yield 91%; m.p.: 163–165 °C; IR (KBr): $\bar{\nu} = 2,929, 1,699, 1,670, 1,640, 1,590 \text{ cm}^{-1}; {}^{1}\text{H} \text{NMR} (\text{CDCl}_3): \delta = 3.09 (2\text{H}, t, 1\text{CH}_2), 3.36 (2\text{H}, t, 1\text{CH}_2), 7.12–7.37 (5\text{H}, m, 5\text{Ar-H}), 7.43–7.83 (7\text{H}, m, 7\text{Ar-H}), 7.98 (1\text{H}, \text{s}, 1\text{Ar-H}) \text{ ppm; }^{13}\text{C} \text{NMR}$ (DMSO-*d*₆): $\delta = 29.67, 35.21, 111.43, 116.11, 124.32, 124.64, 125.93, 128.19, 128.37, 129.43, 131.12, 132.68, 133.96, 137.21, 140.16, 141.07, 170.16, 171.32, 194.35 ppm.$

3,6-Dibenzoyl-2(3H)-benzothiazolone

(6c7, C₂₁H₁₃NO₃S)

Yield 72%; m.p.: 65–67 °C; IR (KBr): $\bar{\nu} = 1,694, 1,660, 1,647, 1,597 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 7.39-7.86$ (12H, m, 12Ar-H), 7.96 (1H, d, J = 7.77 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 112.03, 114.92, 125.49, 128.74, 129.03, 129.47, 129.80, 131.19, 131.49, 132.81, 133.80, 134.38, 136.07, 138.67, 168.14, 169.34, 194.42 ppm.$

6-Benzoyl-3-(3-methylbenzoyl)-2(3H)-benzothiazolone (**6c8**, C₂₂H₁₅NO₃S)

Yield 71%; m.p.: 60–62 °C; IR (KBr): $\bar{\nu} = 2,923, 1,717, 1,680, 1,639, 1,605 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (CDCl_3): \delta = 2.41$

(3H, s, 1CH₃), 7.32–7.49 (4H, m, 4Ar-H), 7.58–7.93 (7H, m, 7Ar-H), 7.95 (1H, s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 18.85, 112.04, 125.48, 126.69, 127.72, 128.55, 128.89, 129.87, 130.28, 131.67, 132.65, 133.50, 135.92, 136.38, 138.98, 166.75, 169.52, 194.66 ppm.$

6-Benzoyl-3-(4-methylbenzoyl)-2(3H)-benzothiazolone (**6c9**, C₂₂H₁₅NO₃S)

Yield 79%; m.p.: 65–66 °C; IR (KBr): $\bar{\nu} = 2,923, 1,713, 1,682, 1,638, 1,610 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.43$ (3H, s, 1CH₃), 7.28–7.47 (4H, m, 4Ar-H), 7.59–7.82 (7H, m, 7Ar-H), 7.99 (1H, d, J = 7.78 Hz, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 19.76, 112.24, 124.15, 126.77, 127.82, 128.36, 128.85, 129.85, 130.24, 131.64, 132.59, 133.49, 135.72, 136.82, 138.87, 167.59, 170.15, 194.75 ppm.$

6-Benzoyl-3-(2-chlorobenzoyl)-2(3H)-benzothiazolone (6c10, C₂₁H₁₂ClNO₃S)

Yield 89%; m.p.: 119–120 °C; IR (KBr): $\bar{\nu} = 1,703, 1,675, 1,652, 1,614, 1,595 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 7.33-7.84$ (11H, m, 1Ar-H), 7.93 (1H, s, 1Ar-H) ppm; ¹³C NMR (CDCl₃): $\delta = 115.60, 122.72, 124.02, 126.61, 127.85, 128.73, 129.65, 129.84, 130.58, 131.54, 132.64, 133.91, 135.72, 136.99, 139.24, 166.67, 168.78, 194.48 ppm.$

6-Benzoyl-3-(4-nitrobenzoyl)-2(3H)-benzothiazolone (6c11, C₂₁H₁₂N₂O₅S)

Yield 65%; m.p.: 165–167 °C; IR (KBr): $\bar{\nu} = 1,702, 1,675, 1,658, 1,618, 1,597 \text{ cm}^{-1}$; ¹H NMR (DMSO- d_6): $\delta = 7.44-7.86$ (7H, m, Ar–H), 8.06–8.23 (3H, m, Ar–H), 8.28 (2H, m, Ar–H) ppm; ¹³C NMR (DMSO- d_6): $\delta = 112.65, 114.58, 123.89, 125.63, 128.75, 128.83, 129.98, 131.28, 132.34, 132.62, 134.69, 137.81, 141.98, 142.45, 167.32, 168.78, 194.48 ppm.$

References

- 1. Poupaert JH, Carato P, Colacino E (2005) Curr Med Chem 12:877
- Yous S, Poupaert JH, Chavatte P, Espiard J-GB, Caignard DH, Lesieur D (2001) Drug Des Discov 17:331
- 3. Yous S, Lebegue N, Poupaert JH, Chavatte P, Berthelot P (2005) J Enzym Inhib Med Chem 20:525
- Moussavi Z, Lesieur D, Lespagnol C, Sauzieres J, Olivier P (1989) Eur J Med Chem 24:55
- Blanc Delmas E, Lebegue N, Wallez V, Leclerc V, Yous S, Carato P, Farce A, Bennejean C, Renard P, Caignard DH, Audinot Bouchez V, Chomarat P, Boutin J, Hennuyer N, Louche K, Carmona MC, Staels B, Penicaud L, Casteilla L, Lonchampt M, Dacquet C, Chavatte P, Berthelot P, Lesieur D (2006) Bioorg Med Chem 14:7377
- Renard P, Lesieur D, Lespagnol C, Cazin M, Brunet C, Cazin JC (1980) Eur J Med Chem 15:453
- Mésangeau C, Narayanan S, Green AM, Shaikh J, Kaushal N, Viard E, Yan TX, Fishback JA, Poupaert JH, Matsumoto Rae R, McCurdy CR (2008) J Med Chem 51:1482

- Bonte JP, Lesieur D, Plat M, Cazin JC, Cazin M, Lespagnol C (1974) Eur J Med Chem 9:491
- Mairesse G, Boivin JC, Thomas DJ, Bermann MC, Bonte JP, Lesieur D (1984) Acta Crystallogr C 40:1019
- Follet C, Boivin JC, Bonte JP, Lesieur D (1991) Acta Crystallogr C 47:882
- Diouf O, Depreux P, Lesieur D, Poupaert JH, Caignard DH (1995) Heterocycles 41:1219
- Ucar H, Van derpoorten K, Depovere P, Lesieur D, Isa M, Masereel B, Delarge J, Poupaert JH (1998) Tetrahedron 54:1763
- 13. Cotelle N, Cotelle P, Lesieur D (1989) Synth Comm 19:3259
- Ucar H, Van derpoorten K, Cacciaguerra S, Spampinato S, Stables JP, Depovere P, Isa M, Masereel B, Delarge J, Poupaert JH (1998) Med Chem 41:3102
- Ishida S, Hashida Y, Shizuka H, Matsui K (1979) Bull Chem Soc Jpn 52:1135
- Ucar H, Van derpoorten K, Kanyonyo M, Lambert D, Isa M, Lesieur D, Poupaert JH (1996) Bull Soc Chim Belg 105:773
- 17. Ouyang X, Han J, Kang R, Zhen X (2001) Cuihua Xuebao 22:487
- 18. Zheng E, Zheng X (2006) J Nat Gas Chem 15:70
- Yusuf MM, Imai H, Hirashima H (2001) J Non-Cryst Solids 285:90
- Belciug MP, Modro AM, Modro TA, Wessels PL (1996) Bull Magn Reson 18:135
- Belciug MP, Modro Agnes M, Modro Tomasza A, Wessels Philippus L (1995) J Phys Org Chem 8:605
- 22. Lespagnol Ch (1955) Bull Soc Pharmacie Lille 71
- Baine NH, Clark Jr WM, Eldridge A (2000) USA Patent WO 2000012468
- 24. Igor P, Marko Z, Stojan S (2006) Tetrahedron Lett 47:4707
- Aichaoui H, Poupaert JH, Lesieur D, Henichart JP (1991) Tetrahedron 47:6649
- Aichaoui H, Lesieur D, Henichart JP (1992) J Heterocycl Chem 29:171
- Yous S, Poupaert JH, Lesieur I, Depreux P, Lesieur D (1994) J Org Chem 59:1574
- Carato P, Yous S, Sellier D, Poupaert JH, Lebegue N, Berthelot P (2004) Tetrahedron 60:10321
- Ucar H, Van derpoorten K, Cacciaguerra S, Spampinato S, Stables JP, Depovere P, Isa M, Masereel B, Delarge J, Poupaert JH (1998) Med Chem 41:3102
- Ucar H, Van derpoorten K, Depovere P, Lesieur D, Isa M, Masereel B, Delarge J, Poupaert JH (1998) Tetrahedron 54:1763
- Guenadil F, Aichaoui H (2003) Phosphorus. Sulfur Silicon Relat Elem 178:1703
- Ashley GW, Burlingame M, Desai R, Fu H, Leaf T, Licari PJ, Tran C, Abbanat D, Bush K, Macielag M (2006) J Antibiot 59:392
- Ishida S, Hashida Y, Shizuka H, Matsui K (1979) Bull Chem Soc Jpn 52:1135
- 34. Lacova M, Sidoova E (1987) Acta Fac Rerum Nat Univ Comenianae Chimia 35:125
- Ucar H, Van Derpoorten K, Kanyonyo M, Isa M, Lambert D, Lesieur D, Poupaert JH (1996) Bull Soc Chim Belg 105:773
- 36. Cotelle N, Cotelle Ph, Lesieur D (1989) Synth Comm 19:3259
- 37. Benzothiazolones as fungicides (1985) Japan Patent 60105604
- 38. Linner H, Herbig H, Wistup I, Wigert H (1959) Chem Ber 92:407
- 39. Benzothiazolinones (1985) Japan Patent 6010567
- 40. Loffelmann FF, Misner RE (1973) US Patent 3775333
- Dushamov DA, Mukhamedov NS, Aliev NA, Bobokulov KM, Levkovich MG, Abdullaev ND, Zhonkhozhaeva FB (2002) O'zbekiston Kimyo Jurnali 2:13
- Sidoova E, Gvozdjakova A, Kralova K, Mitterhauszerova L (1992) Chem Pap 46:112
- 43. Eckstein Z, Zukowski Ed (1958) Przemysl Chem 37:418

- 44. Van derpoorten K, Ucar H, Andrei G, Snoeck R, Balzarini J, De Clercq E, Poupaert JH (1999) Antiviral Chem Chemother 10:87
- 45. Erdogan H, Yulug N (1988) FABAD Farm Bilimler Dergisi 13:423
- 46. Erdogan H, Yulug N (1986) Hacettepe Universitesi Eczacilik Fakultesi Dergisi 6:1
- 47. Hashihayata T, Mandai H, Mukaiyama T (2004) Bull Chem Soc Jpn 77:169
- 48. Carato P, Cherry K, Lebegue N, Berthelot P, Yous S (2007) Heterocycles 71:2041